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Abstract
The surface–atom Casimir–Polder–Lifshitz force out of thermal equilibrium is
investigated in the framework of macroscopic electrodynamics. Particular
attention is devoted to its large distance limit that shows a new, stronger
behaviour with respect to the equilibrium case. The frequency shift produced
by the surface–atom force on the centre-of-mass oscillations of a harmonically
trapped Bose–Einstein condensate and on the Bloch oscillations of an ultra-
cold fermionic gas in an optical lattice are discussed for configurations out of
thermal equilibrium.

PACS numbers: 03.75.Kk, 67.40.Db, 77.22.−d, 78.20.−e

1. Introduction

The electromagnetic force felt by a neutral atom near the surface of a substrate has been
the object of intense investigation since the pioneering works by Casimir and Polder [1] and
Lifshitz, Dzyaloshinskii and Pitaevskii [2, 3]. In addition to the fundamental character of the
force, these studies [4] are presently motivated by the possibility of technological applications
[5], by searching for stronger constrains on hypothetical non-Newtonian forces [6] as well as
its role in biological systems [7].

New perspectives to study such a force are opened by the recent development in storing
and manipulating ultra-cold atoms. Indeed experimental and theoretical research has been
recently focused on the forces acting on ultra-cold atomic gases due to the presence of a nearby
surface. They include atomic beams [8], Bose–Einstein condensates [9–11] and degenerate
Fermi gases [12].

The surface–atom force at thermal equilibrium F eq(T , z) can be in general separated in
two parts

F eq(T , z) = F0(z) + F
eq
th (T , z). (1)
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The first one, F0(z), is related to zero-point fluctuations (T = 0) of the electromagnetic
field. At short distances z this force behaves like 1/z4 and is the analogue of the van der
Waals–London inter-atomic force. At larger distances, the inclusion of relativistic retardation
effects gives rise to the Casimir–Polder asymptotic behaviour [1, 3]

F0(z)z→∞ = −3

2

h̄cα0

πz5

ε0 − 1

ε0 + 1
φ(ε0), (2)

where α0 and ε0 are the static polarizability of the atom and the static dielectric function
of the substrate, respectively. The function φ(ε0) ∼ 1 is defined, for example, in [9].
The second contribution to the force, F

eq
th (T , z), is due to the thermal fluctuations of the

electromagnetic field. This contribution was first considered by Lifshitz [13] who applied
the theory of electromagnetic fluctuations developed by Rytov [14]. At large distances the
thermal contribution approaches the so-called Lifshitz law

F
eq
th (T , z)z→∞ = −3

4

kBT α0

z4

ε0 − 1

ε0 + 1
. (3)

Such asymptotic behaviour is reached at distances larger than the thermal wavelength
λT = h̄c/kBT , corresponding to ∼7.6 µm at room temperature. Thus, it is the leading
contribution to the total force.

The Lifshitz force was originally evaluated at thermodynamic equilibrium. A non-trivial
issue is the study of such a force out of thermal equilibrium, characterizing configurations
where the temperature of the substrate TS and the environment TE, do not coincide. For
instance in typical experiments with ultra-cold atomic gases, the environment temperature is
determined by the chamber containing the substrate and the trapped atoms.

In this paper we describe the surface–atom force out of thermal equilibrium and how to
recover its asymptotic behaviour at large distances. We assume that the radiation surrounding
the atom is not able to populate its internal excited states which are assumed to be at energies
h̄ωat much higher than the thermal energy

kBTS, kBTE � h̄ωat . (4)

This condition is very well satisfied at ordinary temperatures (for example, the first optical
resonance of Rb atoms corresponds to 1.8 × 104 K). In the last part of the paper, we analyse
the effects of such a force on cold atoms, and in particular on the centre-of-mass motion of a
trapped Bose–Einstein condensate and on the Bloch oscillations of ultra-cold fermionic atoms
in an optical lattice.

2. The Green function formalism

In the calculation of the surface–atom force, the main ingredient is clearly the electromagnetic
field and its sources. The latter, in our approach, is treated as point-like oscillating dipoles.
Furthermore, it is useful to write the fields using Green’s function formalism, Green’s function
being the solution of the wave equation for a point-like source. Once this solution is known, the
solution due to a general source can be obtained by the principle of linear superposition. The
dyadic Green function G describing the electromagnetic field in surface optics (for isotropic,
linear and non-magnetic media) is the solution of the equation

∇ ∧ ∇ ∧ G[ω; r, r′] − k2ε(ω; r)G[ω; r, r′] = 4πk2Iδ(r − r′), (5)
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with the boundary conditions imposed by the geometry of the problem. In previous equation
k = ω/c is the vacuum wavenumber, ε(ω; r) is the dielectric function and I is the identity
dyad. Equation (5) comes from the usual wave equation for the Fourier-transformed electric
field

∇ ∧ ∇ ∧ E[ω; r] − k2ε(ω; r)E[ω; r] = 4πk2P[ω; r], (6)

obtained from the macroscopic Maxwell equations in which the sources are described by
the effective electric polarization field P[ω; r] related to the electric current by J[ω; r] =
−iωP[ω; r]. The convolution of the solution obtained from equation (5) and the effective
electric polarization gives the electric field at the observation point r

E[ω; r] =
∫

G[ω; r, r′] · P[ω; r′] dr′. (7)

3. Surface–atom force

Let us consider the atom described by its complex dielectric polarizability function α(ω) =
α′(ω) + iα′′(ω) in a vacuum half space V1 and placed at a distance z from the surface of the
dielectric half space V2. Let us choose an orthogonal coordinate system with the xy plane
coincident with the interface and the z axis such that the dielectric occupies the region with
z < 0 and the vacuum of the region with z > 0. The force acting on a neutral atom without a
permanent electric dipole moment is [15]

F(r) = 〈
d tot

i (t)∇′Etot
i (r′, t)

∣∣
r

〉 ≈ 〈
d ind

i (t)∇′Efl
i (r′, t)

∣∣
r

〉
+

〈
dfl

i (t)∇′Eind
i (r′, t)

∣∣
r

〉
, (8)

where di’s are the atomic electric dipole components, we have used Einstein’s summation
convention for repeated indices and ∇′ ≡ ∇r′ . In equation (8), the average is done with
respect to the state of the atom and of the field and the lowest order in perturbation theory
has been considered. The first term describes the (spontaneous and thermal) field fluctuations
correlated with the induced dipole, and the second term involves (spontaneous and thermal)
dipole fluctuations correlated to the field they induce. The induced electric dipole for the atom
at the position r is

dind[ω] = α(ω)Etot[ω; r] ≈ α(ω)Efl[ω; r], (9)

where Efl[ω; r] is the fluctuating field, and now α(ω) is the atomic polarizability of the atom
in an unbounded space. By modelling the atom as a point-like source dipole d(t) = d[ω] e−iωt

at r, the corresponding polarization in the frequency domain is P[ω, r′′] = d[ω]δ(r′′ − r), and
the electric field at the position r′ is

Eind[ω; r′] = G[ω; r′, r] · dtot[ω] ≈ G[ω; r′, r] · dfl[ω]. (10)

Using equations (9) and (10), the fluctuating dipole and field contributions to the surface–atom
force (8) read

〈
d ind

i (t)∇′Efl
j (r′, t)

∣∣
r

〉 =
∫ ∫

dω

2π

dω′

2π
e−i(ω−ω′)tα(ω)∇′〈Efl

i [ω; r]Efl†
j [ω′; r′]

〉∣∣
r, (11)

〈
dfl

i (t)∇′Eind
j (r′, t)

∣∣
r

〉 =
∫ ∫

dω

2π

dω′

2π
e−i(ω−ω′)t∇′G∗

jk[ω; r′, r]
∣∣
r

〈
dfl

i [ω]dfl†
k [ω′]

〉
, (12)

where the integrations are over the whole real frequency axis.
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4. Surface–atom force at thermal equilibrium

At thermal equilibrium, in order to calculate the average values in (11) and (12), it is possible
to use the fluctuation dissipation theorem [14, 16]. One finds for the fluctuating dipoles

〈
dfl

i [ω]dfl†
j [ω′]

〉 = 4πh̄δ(ω − ω′)δij

1 − e−h̄ω/kBT
α′′(ω), (13)

and for the fluctuating fields

〈
Efl

i [ω; r]Efl†
j [ω′; r′]

〉 = 4πh̄δ(ω − ω′)
1 − e−h̄ω/kBT

Im Gij [ω; r, r′]. (14)

After substituting the previous equalities into equations (11) and (12) and using the reciprocity
theorem Gij [ω; r, r′] = Gji[ω; r′, r], the surface–atom force at thermal equilibrium becomes

F eq(T , z) = h̄

π

∫ ∞

0
dω coth

(
h̄ω

2kBT

)
Im[α(ω)∂zGii[ω; r, r′]|r]. (15)

Because of the relation coth (h̄ω/2kBT ) = 1 + 2n̄ (ω/T ), where n̄ (ω/T ) = (eh̄ω/kBT − 1)−1

is the Bose factor, one can separate in equation (15) the zero-point fluctuations contribution
F0(z) from the thermal contribution F

eq
th (T , z). The latter term is the sum of two contributions

arising from the two terms of equation (8). The first one is due to the field fluctuations and it is
linear in α′. The second one arises from the dipole fluctuations and it is linear in α′′. As long
as the condition (4) is valid, the field fluctuations contribution is the leading term in F

eq
th (T , z).

5. Surface–atom force out of thermal equilibrium

A first important investigation of the surface–atom force out of thermal equilibrium was carried
out by Henkel et al [15] who calculated the force generated by a dielectric substrate at finite
temperature by assuming that the environment temperature is zero. The principal motivation
of that paper was the study of the force at short distances.

In this section we analyse the general case of an atom placed in a vacuum at a distance
z from the flat surface of a substrate that we assume to be locally at thermal equilibrium at
a temperature TS which can be equal or different from the environment temperature TE, the
global system being in or out of thermal equilibrium, respectively, but in a stationary regime
[17, 18]. In this configuration it is relatively easy to describe the radiation produced by the
flat substrate, while it is less trivial to describe the radiation coming from the environment.
To face this problem we use the Lifshitz trick [2] for which the vacuum half space is assumed
to be a dielectric locally at thermal equilibrium with the temperature TE, by introducing
an infinitesimal imaginary part of its dielectric function. Using the fluctuation dissipation
theorem and after integrating over an infinite volume, the vacuum half space produces a
radiation corresponding to the one that in a real system is generated by the environment walls
at TE.

We refer to the substrate as to the half space 2 occupying the volume V2 with z < 0, with
dielectric function ε2(ω) = ε′

2(ω) + iε′′
2(ω) and in thermal equilibrium at the temperature TS.

The vacuum half space 1 instead occupies the volume V1 with z > 0 and is characterized by
a dielectric function ε1(ω) = ε′

1(ω) + iε′′
1(ω) and a temperature TE. Only after calculating the

electric fields in this configuration, we set ε1(ω) = 1.
As well as for the thermal equilibrium case, the surface–atom force out of thermal

equilibrium can be written as

F neq(TS, TE, z) = F0(z) + F
neq
th (TS, TE, z), (16)
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where the thermal contribution F
neq
th (TS, TE, z), provided the condition (4) is satisfied, is

dominated by the thermal part of the fluctuating fields correlation (11) only, as at thermal
equilibrium1.

The physical origin of the electromagnetic field is [14], the random fluctuating polarization
field P[ω; r], whose correlations, at thermal equilibrium, are described by the fluctuation
dissipation theorem

〈Pk[ω; r]P ∗
l [ω′; r′]〉 = δ(ω − ω′)δ(r − r′)δklh̄ε′′(ω)

1 − e−h̄ω/kBT
. (17)

Since the correlations of the source polarization field are local, the fluctuations of the sources
at different points add up incoherently. Therefore, we can assume that in the whole space,
the correlations of the sources are given by equation (17), valid for source dipoles in the two
half-spaces assumed to be locally at thermal equilibrium at two different temperatures [20].
In order to calculate the field correlation function (11), we express the electromagnetic field
in terms of its source polarization field via equation (7), and using equation (17) we write the
thermal part of the surface–atom force out of thermal equilibrium as

F
neq
th (TS, TE, z) = F

neq
th (TS, 0, z) + F

neq
th (0, TE, z), (18)

where the first thermal contribution

F
neq
th (TS, 0, z) = h̄

2π2

∫ ∞

0
dω

ε′′
2(ω) Re

[
α(ω)

∫
V2

Gik[ω; r, r′]∂zG
∗
ik[ω; r, r′] d3r′]

eh̄ω/kBTS − 1
(19)

arises from the sources in the substrate V2, while the second one

F
neq
th (0, TE, z) = h̄

2π2

∫ ∞

0
dω

ε′′
1(ω) Re

[
α(ω)

∫
V1

Gik[ω; r, r′]∂zG
∗
ik[ω; r, r′] d3r′]

eh̄ω/kBTE − 1
(20)

is produced by the sources in the vacuum half space V1.2 It is possible to show that the sum
of equations (19) and (20), at the same temperature, reproduce the thermal part of the force at
thermal equilibrium [18]. Indeed it is possible to apply to the whole space Green’s functions
property (see, for example, [19])∫

	

dr ε′′(r, ω)Gik[ω; r1, r]G∗
jk[ω; r2, r] = 4π Im Gij [ω; r1, r2], (21)

where the integration is on the volume 	 such that on its surface the Green function is zero.
Then we can express the complete surface–atom force out of thermal equilibrium in the
convenient form

F neq(TS, TE, z) = F eq(TE, z) + F
neq
th (TS, 0, z) − F

neq
th (TE, 0, z), (22)

where the equilibrium force F eq(T , z) is given by (1) and F
neq
th (T , 0, z) is defined by

equation (19). Consistently with assumption (4), in deriving the thermal part of equation (22)
we ignored terms proportional to the imaginary part of the atomic polarizability. For the same
reason the wind contribution in equation (19) and (20), related to α′′, can be ignored and the
real part α′(ω), corresponding to the dispersive contribution, can be replaced with its static

1 It is worth noting that since zero-point fluctuations are not affected by condition (4), in the calculation of the zero
temperature force F0(z) both dipole zero-point fluctuations (13) and field zero-point fluctuations (14) are needed.
2 The Green function Gik then reduces, respectively, to its transmitted component in equation (19) [21] and to its
incident, reflected and local component in equation (20) [18].
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Figure 1. Surface–atom force F neq(z) calculated from equation (22), for different thermal
configurations.

(ω = 0) value α0. In this non-absorbing condition, the force of equation (18) can be also
written in the form F

neq
th (TS, TE, z) = 4πα0∂zUEl(TE, TS, z), where UEl = 〈E(z, t)2〉/8π is

the thermal component of the electric energy density at the atom position.
After some lengthy algebra we find for equation (19), the relevant result

F
neq
th (T , 0, z) = −2

√
2h̄α0

πc4

∫ ∞

0
dω

ω4

eh̄ω/kBT − 1

∫ ∞

1
dqq exp(−2z

√
q2 − 1ω/c)

√
q2 − 1

×
√

|ε(ω) − q2| + (ε′(ω) − q2)

(
1

|
√

ε(ω) − q2 +
√

1 − q2|2

+
(2q2 − 1)(q2 + |ε(ω) − q2|)

|
√

ε(ω) − q2 + ε(ω)
√

1 − q2|2

)
, (23)

where we introduced the dimensionless variable q = Kc/ω, with K being the modulus of
the electromagnetic wave-vector component parallel to the interface, and ε(ω) ≡ ε2(ω). In
figure 1, we show the explicit results for the full force obtained from equation (22) as a function
of the distance from the surface for different choices of TS and TE. The calculations have been
performed for a sapphire substrate (ε0 = 9.41) and for 87Rb atoms (α0 = 47.310−24 cm3). For
F eq(T , z), we have used the predictions of [9]. The figure clearly shows that the thermal effects
out of equilibrium are sizable (solid lines), thereby providing promising perspectives for future
measurements of the surface–atom force at large distances. To increase the attractive nature
of the force it is much more convenient to heat the substrate by keeping the environment
at room temperature (lower solid line) rather than heating the whole system (dashed line).
When TS < TE (upper solid line) the force exhibits a characteristic change of sign reflecting a
repulsive nature at large distances (see also discussion below). At short distances the thermal
correction to the force becomes smaller and smaller and is determined by the temperature of
the substrate. The new effects are visible already at distances z = 4–7 µm, where experiments
are now becoming available [10].
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6. New asymptotic large distance limit

In this section we discuss in details the large z behaviour [17] of the out of equilibrium force
(22). After the substitution q2 − 1 = t2, equation (23) becomes

F
neq
th (T , 0, z) = −2

√
2h̄α0

πc4

∫ ∞

0
dω

ω4

eh̄ω/kBT − 1

∫ ∞

0
dt t2 e−2ztω/cf (t, ω), (24)

where

f (t, ω) =
√

|ε(ω) − 1 − t2| + (ε′(ω) − 1 − t2)

(
1

|
√

ε(ω) − 1 − t2 + it |2

+
(2t2 + 1)(1 + t2 + |ε(ω) − 1 − t2|)

|
√

ε(ω) − 1 − t2 + iε(ω)t |2

)
. (25)

Due to the presence of the exponential e−2ztω/c in equation (24), it is possible to show that
only the region t � 1 contributes to the large z behaviour of the force that in such a limit
exhibits the non-trivial asymptotic behaviour

F
neq
th (T , 0, z)z→∞ = −

√
2h̄α0

z32πc

∫ ∞

0
dω

ω

eh̄ω/kBT − 1
f (ω). (26)

This force exhibits a slower 1/z3 decay with respect to the one holding at thermal equilibrium
where it decays like 1/z4 (see equation (3)). In the above equation, we have introduced the
low t expansion of equation (25)

f (ω) =
√

|ε(ω) − 1| + [ε′(ω) − 1]
2 + |ε(ω) − 1|

|ε(ω) − 1| . (27)

Results (26) and (27) provide the large distance behaviour (z → ∞) of the force (23) where
the only assumption made was condition (4). Due to the presence of the Bose factor, the force
(26) depends on the optical properties of the substrate at frequencies of the order of ∼ kBT/h̄.

For temperatures much smaller than h̄ωc/kB, where ωc is the lowest characteristic
frequency of the dielectric substrate, only the static value of the dielectric function is relevant
and so we can replace f (t, ω) with its low frequency limit in equation (24). In this limit
f (t, ω → 0) is different from zero only for 0 < t <

√
ε0 − 1, and after the t � 1 expansion

equation (24) becomes

F
neq
th (T , 0, z)z→∞ = − h̄α0

z32πc

ε0 + 1√
ε0 − 1

∫ ∞

0
dω

ω

eh̄ω/kBT − 1

∫ 2z
√

ε0−1ω/c

0
du u2 e−u, (28)

where we performed the change of variable u = 2ztω/c and replaced f (t, ω → 0) with its
t � 1 expansion

√
2(ε0 + 1)/

√
ε0 − 1. For

z � λT√
ε0 − 1

, (29)

where λT = h̄ω/kBT is the thermal wavelength, we can extend the upper limit of integration
on u to +∞ and so we obtain that the force (22) felt by the atom approaches the asymptotic
behaviour

F neq(TS, TE, z)z→∞ = −π

6

α0k
2
B

(
T 2

S − T 2
E

)
z3ch̄

ε0 + 1√
ε0 − 1

. (30)

Result (30) holds at low temperature with respect to the first dielectric function resonance
(T � h̄ωc/kB) and at distances satisfying the condition (29) calculated at the relevant
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temperatures TS and TE. Equation (30) shows that, at large distances, the new force is
attractive or repulsive depending on whether the substrate temperature is higher or lower than
the environment one. Furthermore, it exhibits a stronger temperature dependence with respect
to the equilibrium force (3), explicitly contains the Planck constant and has a 1/z3 distance
dependence3.

The new dependence of F neq(T , 0, z) on temperature and distance can be physically
understood by noting that the main contribution to the z-dependent part of the electric energy
UEl arises from t � 1. Such values of t correspond to the component of the black-body
radiation impinging on the surface from the dielectric side in a small interval of angles, of
order of (λT/z)2, near the angle of total reflection. This radiation creates slowly damping
evanescent waves in vacuum. As a result F neq(T , 0, z) turns out to be, in accordance with
equation (30), of order of −(

α0λ
2
T

/
z3

)
UBB, where UBB ∝ T 4 is the energy density of the

black-body radiation.
Equation (30) holds for a dielectric substrate where ε0 is finite. If we want to find the large

distance limit for a metal we should use equation (26). In the limit of small values of T we
can use the Drude model. As only frequencies ω ∼ kBT/h̄ contribute, one can substitute in
equation (27) ε′′(ω) = 4πσ/ω � 1, the real part ε′(ω) remaining finite as ω → 0. Then one
finds f (ω) → √

ε′′(ω) = 2
√

πσ/ω, where σ is the electric conductivity, so that for a Drude
metal equation (30) is replaced by

F neq(TS, TE, z)z→∞ = −α0ζ(3/2)
√

σk
3/2
B

(
T

3/2
S − T

3/2
E

)
z3c

√
2h̄

, (31)

where ζ(3/2) ∼ 2.61 is the Riemann function. It is easy to show that equation (31) is valid at
the condition

z � h̄3/2c
√

4πσ/(kBT )3/2. (32)

7. Effects of the surface–atom force on ultra-cold atoms

Ultra-cold gases can provide a useful probe of the surface–atom force. A mechanical tool
sensitive to the gradient of the surface–atom force is in fact the frequency shift of the centre-
of-mass oscillation of a trapped Bose–Einstein condensate [9, 10]. On the other hand,
experiments based on Bloch oscillations are interferometric tools sensitive to the force itself
[23, 12]. Finally, one could also think of interference experiments involving the macroscopic
phase of Bose–Einstein condensates in a double-well potential [24, 25]. The position of the
corresponding interference fringes are sensitive to the surface–atom potential. In the last part
of this paper we discuss the first two above-mentioned experiments.

7.1. Effects on the collective oscillations of a trapped BEC

Bose–Einstein condensed gases [26] are very dilute, ultra-cold samples characterized by
unique properties of coherence and superfluidity. The study of the collective oscillations [27]
of a Bose–Einstein condensate provides a useful probe of the surface–atom potential. In fact,
it is possible to measure with great accuracy the frequency of the centre-of-mass motion ωCM

of a condensate. For a harmonically trapped condensate, the frequency ωCM corresponds to
the harmonic trap frequency ωz, where z is the direction of the oscillations. Thus, if a BEC
in a harmonic trap is placed at a distance d from the surface of a substrate, the surface–atom

3 Instead of calculating the asymptotic behaviour (30) of the force from the general equation (23), it is possible to
produce a more direct derivation assuming from the very beginning that one can neglect absorption and dispersion of
the dielectric function of the substrate [22].
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Figure 2. (a) Relative frequency shift (33) of the centre-of-mass oscillation of a BE condensate
(Rz = 2.5 µm, ωz/2π = 220 Hz) and (b) relative shift of the Bloch oscillation period of a
degenerate Fermi gas (34), out of thermal equilibrium (16).

potential Vs−a(z) perturbs the trap potential and produces a shift in ωCM. In the limit of small
oscillations (for a complete analysis see [9]), such a shift is

ω2
CM = ω2

z +
1

m

∫ +Rz

−Rz

dz nz
0(z)∂

2
z Vs−a(z + d), (33)

where nz
0(z) is a 1D column density of the gas (density integrated over the directions

perpendicular to the direction of oscillation) and Rz is the Thomas–Fermi radius in the z

direction4. Therefore, measuring ωCM it is possible to extract the surface–atom potential
Vs−a(z) [9, 10].

In figure 2(a) we plotted, as a function of the surface–condensate separation d, the relative
frequency shift �ωCM/ωz = (ωz − ωCM)/ωz for the centre-of-mass oscillations of a 87Rb
condensate close to a sapphire substrate. In such a calculation we used the surface–atom
potential corresponding to the force (22).

7.2. Effects on Bloch oscillations in Fermi gases

When an external force Fext is applied to a particle trapped in a periodical potential, the
particle undergoes oscillations in a momentum space (the Bloch oscillations). During this
oscillations the particle quasi-momentum q evolves according to h̄q̇ = Fext. This is what
happens for example in a sample of ultra-cold atoms trapped in a 1D optical lattice aligned
along the vertical direction. Bloch oscillations produced by the effect of the gravity force
FG = mg have a period TB = 4πh̄/mgλ, where λ is the lattice wavelength and g is the gravity
acceleration. If now a surface is brought close to the atomic sample, the additional surface–
atom force Fs−a(z) perturbs the gravitational potential and affects the dynamics of the Bloch
oscillations (for a complete analysis see [12, 23]). In particular, it produces a shift of the period
TB. In figure 2(b), we plotted the relative shift �TB/TB for different thermal configuration as
the distance d between the centre of a cloud of 40K fermionic atoms (α0 = 4.3 × 10−23 cm3)
and the surface of a sapphire substrate is varied. We also used the approximation of a small

4 For a Bose–Einstein condensate in its ground state, the 1D column density is easily evaluated in the so-called
Thomas–Fermi approximation where nz

0(z) = 15(1 − z2/R2
z )

2/16Rz [26].
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cloud of Fermi atoms, for which

�TB

TB
= −Fs−a(d)

mg
. (34)

In the range of distances plotted in figure 2(b), this approximation provides results in a good
agreement with the exact calculation [12] that takes into account real experimental parameters
of the gas.

It is worth noting that both effects of the surface–atom force out of thermal equilibrium
described in the last section, and plotted in figures 2(a) and (b), are in the domain of the present
experimental accuracy [10, 23].
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